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Specifying Visual Parameters for Haptic-visual
Sequential Matching of Material Softness

Yusuke Ujitoko, and Takahiro Kawabe

Abstract—When shopping online, a customer cannot directly
touch the products but may sometimes make judgments about the
haptic properties of a product based only on visual information,
before making a purchase decision. In this scenario, a customer
may be dissatisfied if there is an inconsistency in the judgment
of the product’s haptic properties they made before purchasing,
and their actual experience of those haptic properties once
they have received the product. Thus, it is necessary for online
sellers to appropriately optimize visual information for materials
so that perceived softness is consistent between haptic and
visual modalities presented in different locations and at different
moments in time. Focusing on visual indentation depth and speed,
we examined the visual parameters used to sequentially match
haptic and visual softness from haptic and visual information
made available in different locations and at different times.
Participants performed a two-alternative forced choice task to
determine which of two video clips contained an elastic material
with a softness impression most similar to the haptic softness
of an actual material that the participants indented with their
index finger. Based on a sequence of 25 repeated judgments for
each material, our algorithm optimized each visual parameter
based on a Gaussian process. The optimized visual indentation
depth varied consistently with material compliance, while the
optimized visual indentation speed did not, suggesting that
visual indentation depth was critical for softness matching. The
optimized visual indentation depth was highly correlated with the
haptic indentation depth. Subjective rating scores for the softness
matching increased significantly after the optimization process.
The results indicate that participants were able to successfully
match the haptic and visual softness of materials by checking
the relationship between indentation depths detected haptically,
and those detected visually.

Index Terms—Material Softness, Sequential Matching, Visual
Softness, Haptic Softness.

I. INTRODUCTION

Haptic experiences are an essential aspect of purchasing
behaviors. For example, it is known that some individuals
purchase a product only after they have experienced some kind
of direct haptic interaction with it [1]. Meanwhile, in some
purchase contexts, purchase decisions need to be made without
direct haptic experience of a product. One representative
example is online shopping. Online shopping volumes have
grown with each passing year [2] and are expected to continue
to do so even after COVID-19 [3]. Although online customers
do not directly touch a product before purchasing, they may
predict certain haptic properties of a product based on visual
information.

One of the haptic properties that can be judged visually
is softness [4]. Softness is the subjective impression of the
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physical compressibility and deformability of materials as
described in the introduction of the book [5]. Touching soft
materials gives people a pleasant sensation [6], [7], and soft
materials sometimes invite hedonic touch [8]. To properly
communicate vision-based softness to online customers, it is
important for online sellers to devise ways to make visual
softness approximate as closely as possible to the actual haptic
softness of their products. Consumers may be dissatisfied if
there is a major discrepancy between their judgment of the
softness of a product made based on visual information before
buying, and the softness of the product perceived haptically
once they have received the actual item after purchasing.
Therefore, online sellers need to properly optimize visual
information relating to product materials so that perceived
softness is matched between haptic and visual modalities.
The present study focuses on the problem of how to achieve
haptic and visual sequential matching of material softness by
optimizing visual information.

Sequential matching here refers to the human behavior of
evaluating the consistency of haptic and visual softness for
haptic-visual stimuli when each is separately presented in
different locations and at different times. As yet little is known
about how the cognitive system matches material softness
between the senses of touch and sight. In the context of
multi-modal integration, there have been studies investigating
how humans “integrated” stimuli with different presentation
timings into a single softness perception [9], [10], [11],
[12]. For example, Di Luca et al. have shown that a delay
between the presentation of visual and haptic information
during indentation decreased the perceived softness of a virtual
spring [9]. Lecuyer et al. have shown that participants felt a
virtual spring on the screen to be softer when the spring was
compressed to a larger extent [10]. Metzger et al have shown
that the haptic softness judgment made by their experimental
participants was sensitive to the sequential order of presented
stimuli [11], suggesting that the judgment depended on the
participants’ prior experience (or judgment) of softness. Like
these studies regarding stimulus presentation timing, Xiao et
al. have investigated how tactile and visual information is
matched when information for both modalities is given at the
same time [13]. In contrast with previous studies, we were
interested in situations where, for example, three seconds after
an observer haptically confirms the softness of a cushion by
pressing it with her/his finger, the same observer visually con-
firms the softness of “another” cushion by watching another
person pressing it and compare the softness of the cushions.
In the assumed situation, it is unlikely that the perception of
a single object will occur, as has been shown to be the case
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in previous studies [9], [10], [11], because it does not seem
a plausible strategy for the cognitive system to integrate the
signals relating to the different cushions to create a mental
representation of a single object. None of these studies has
investigated how human participants match haptic and visual
softness when these modalities are stimulated sequentially in
such situations.

The purpose of the present study was to clarify which visual
parameters in video clips of materials were used for the haptic-
visual sequential matching of material softness. Although it
is assumed that people perform softness matching in various
contexts in their daily lives, no previous study has clarified
which information in the haptic and visual modalities was
used for the matching. Once it becomes clear what visual
parameters are used for softness matching, we will better
understand the mechanism of this situation. Moreover, the
elucidation of the visual parameters used in haptic-visual
sequential softness matching has some practical value in the
context of online shopping. For example, online sellers may
be able to optimize visual information relating to the haptic
softness of their products. By editing videos of material defor-
mation, visual parameters can be easily manipulated. However,
no previous studies have focused on the visual parameters used
in the haptic-visual sequential matching of material softness.
By optimizing the visual parameters identified in this study,
online sellers will be able to effectively convey the haptic
softness of their products in their video presentations.

In the present study, we focused on visual parameters which
could be expected to vary when a deformable material was
being indented from its uppermost surface. While there are
different perceptual dimensions for visual and haptic soft-
ness [14], [15], we focused on the “deformability” dimension,
which corresponds well with material compliance, rather than
other dimensions such as viscosity, granularity, or furriness.
Also, among the different types of materials that could be
rated to be soft and viscous [16], we focused on elastic
materials. Some previous studies have consistently reported
that visual indentation depth was a critical cue for judgments
of the softness of a deformable material [17], [18], [19],
[20]. The visual indentation depth here means the visible
depth of an indentation into an elastic material surface. It
has been demonstrated that a video clip of both a real [17],
[19], [20] or a computer-rendered material [18] with a deeper
indentation produced greater impressions of material softness.
In addition, a previous study [19] has also shown that, besides
the visual indentation depth, the visual indentation speed
significantly contributes to the judgment of visual softness.
The visual indentation speed here means the visible speed
of an indentation being made into the surface of an elastic
material. The study just cited found that a higher indentation
speed resulted in higher softness rating scores. The authors of
the study also reported that in a comparison between visual
indentation speed and visual indentation depth, the latter had
a greater influence on the judgment of softness.

We regarded visual indentation depth and speed as potential
contributors to the haptic-visual sequential matching of mate-
rial softness, since they are also haptically discernable when
a participant makes an indentation in a real object with their

own finger. By establishing the relationship between haptic
and visual indentation depths, or haptic and visual indentation
speeds, we expected that participants may be able to achieve
haptic-visual softness matching. It is a focus of our interest to
determine how these visual parameters were actually used for
the haptic-visual sequential matching of material softness.

To clarify this main focus of our study, we conducted an
experiment in which participants performed sequential match-
ing of softness between haptic and visual stimuli. Specifically,
our experimental participants watched a pair of video clips
of a material being indented three seconds either before
or after they themselves haptically indented a real material.
Participants were not allowed to observe the clips during the
haptic indentation, nor were they allowed to haptically perform
the indentation during the visual observation of the clips. The
participants judged which of the clips contained a material
whose softness was most similar to the material they were
haptically indenting. The participants’ judgments on the soft-
ness similarity were used to optimize the visual parameters —
visual indentation depth and speed —, through a human-in-the-
loop optimization process. This was done by using Bayesian
optimization with a Gaussian process, which updated the
model (that describes the relationship between the participants’
judgments and the visual parameters) iteratively based on
the participants’ judgments. Specifically, in the optimization
procedure, the algorithm took the visual parameters which
the participants chose in the current trial as its input. Next,
the algorithm updated the objective function with a Gaussian
process. Finally, the algorithm searched for and proposed a
new set of visual parameters that would likely induce a prefer-
ential choice by the participants in the subsequent trial, on the
basis of a preference learning algorithm featuring exploitation
(choosing points near a previously observed optimum) and
exploration (choosing points in areas that have not been well
explored). Thus, as the optimized values were determined
on the basis of the visual parameters that the participants
preferentially chose, it followed that we could conclude that
the optimized value of the visual parameters was related to
the participants’ preferential judgment for the haptic-visual
softness matching.

II. METHOD

A. Participants

Twelve people (7 males and 5 females, all right-handed)
with a mean age of 27.4 (SD: 7.0) participated. They were not
informed about the specific purpose of the experiments. They
reported that they had normal or corrected-to-normal visual
acuity. They were recruited from outside the laboratory by a
Japanese hiring agency and were paid for their participation.
Ethical approval for the present study was obtained from the
ethics committee at Nippon Telegraph and Telephone Corpo-
ration (Approval number: R02-002 by NTT Communication
Science Laboratories Ethics Committee). The experiments
were conducted in accordance with the 2008 Declaration of
Helsinki. Written informed consent was obtained from all
participants.
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Fig. 1. Experimental environment. Participants indented the material’s upper
surface without being able to look at it.

TABLE I
TWO SIZES OF HOLE, R SQUARED VALUE OF FITTED LINEAR MODEL

(BETWEEN FORCE AND DISPLACEMENT), AND MATERIAL COMPLIANCE
FOR EACH MATERIAL.

A 0.6 0.5 0.993 0.235

B 1.2 0.65 0.988 0.271

C 1.45 0.5 0.985 0.358

D 1.4 0.95 0.986 0.572

E 0.5 1.8 0.993 0.759

F 1.75 0.8 0.917 2.473

Diameter of
 first hole

[mm]
Material

Diameter of
 second hole

[mm]

R squared value 
of fitted 

linear model

Compliance
[mm/N]

B. Apparatus

Figure 1 shows the experimental environment. Participants
were seated comfortably on a chair and placed their right
index finger on the upper surface of a material positioned
in front of their right hand. To prevent them from receiving
any visual information about the materials, a barrier was
set up between the participants and the materials. A display
(VIEWPixx; VPixx Technologies Inc., Canada) with a 1920
× 1200 resolution at 120Hz was positioned in front of the
participants at a distance of 90 cm.

1) Haptic Stimuli: We attempted to replicate the six cubic
metamaterials introduced in a previous study [21] by using
identical types of material (TangoBlackPlus [22]) and a 3D
printer (Stratasys Obje500). See supplementary Note 1 for how
we selected the specific six materials used for this study from
the 12 used in the previous study just referenced. Figures 2(a)
and (b) respectively show photographs of the materials and
their force-displacement curves. Each side of the material was
42 mm long and the shape contained 169 cylindrical holes.
There were two sizes of holes in each material, which differed
between the six materials as shown in the first and second
columns in Table I. There was a 3.00 mm gap between the
holes. These configurations were identical to those used in a
previous study [21].

To characterize the properties of each material, we per-
formed uniaxial load testing. An increasing force was applied

to the cubes’ upper surface to give a displacement at a constant
speed of 1 mm / 6 seconds, and the corresponding force was
recorded using a force tester (MCT-2150, A&D Co., Ltd.).
Figure 2(b) shows the measured force-displacement curves.

To check the linearity of the deformation of the six materi-
als, we fitted the data with linear models to regress the force
with displacement for each material. The R squared values
of the fitness ranged from 0.917 to 0.993 (see the R squared
values for each material in the third column in Table I). Thus,
we regarded the force-displacement relationship as linear and
defined the compliance according to the values in the fourth
column of Table I. The compliance value for each material
used for analysis is shown in Figure 2(c).

2) Visual Stimuli: The visual stimuli in our experiment
were video clips that showed the upper surface of an elastic
material being pushed down by an indenter (a cylinder with
a diameter of 1.3 cm). The video resolution was 288 x 288
pixels at 29.97 frames per second. We filmed the videos
from a camera position diagonally above the materials so that
the upper surface pushed by the indenter could be clearly
seen. The horizontal distance between the camera and the
materials was 40 cm and the height of the camera above the
materials was 17 cm. The elevation angle of the camera was
approximately 23 ◦. The camera lens was oriented towards the
material.

The raw video recorded the indenter pressing into the
materials at a constant speed of 1 mm/6 seconds. The raw
videos started from a point when the indenter was stationary
and in contact with the material’s upper surface. They showed
the indenter pushing the material down to a depth of 18 mm
and immediately returning to its starting position (see Fig-
ure 3). We exported all the frames from the videos and, by
manipulating which frames were presented in each stimulus
video, we were able to control the visual indentation depth and
the visual indentation speed as they appeared in the videos.
See some example video clips in the Supplementary Videos.

The visual indentation depth refers to the depth of the
indentation made by the indenter into the material’s upper
surface. The visual indentation speed refers to the speed at
which the indenter pressed into the material’s upper surface. In
this experiment, these two visual parameters in the video clips
were optimized on the basis of the participants’ responses. The
presented visual indentation depth could vary from 1.0 mm to
18.0 mm. The presented visual indentation speed could vary
from 2.0 mm/s to 15.0 mm/s. The details of our optimization
algorithm are described in the “II. D. Optimization Algorithm”
section.

3) Tracking Participant’s Finger Position: The participant’s
index finger position was monitored with an optical tracking
system (Optitrack, V120 Trio). The marker for the tracking
system was attached to the nail of the participant’s index finger.
The mean tracking system refresh rate across all trials was
190.4 captures per second.

C. Task

There were two tasks in this experiment: a visual-haptic
task and a haptic-visual task. The tasks differed in the order
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Fig. 2. (a) Appearance of materials. (b) Force-displacement relationships of materials. (c) Compliance of each material.

of presentation of the visual and haptic stimuli. In the visual-
haptic task, participants were presented with the haptic stimuli
first and, three seconds later, with the visual stimuli. In the
haptic-visual task, the order of presentation was reversed. Half
of the participants performed the visual-haptic task for all
materials first, and the haptic-visual task for all materials
second. The other half of the participants performed these
tasks in reverse order.

The reason why we configured two tasks (the haptic-visual
task and the visual-haptic task) was not to investigate the effect
of order but rather to cancel it out.

D. Optimization Algorithm

This study adopted a Bayesian framework with a Gaussian
Process [23] to optimize visual parameters. A simple way to
optimize two parameters is by a grid search, a time-consuming
method that allows comprehensive exploration of a two-
dimensional space. A Bayesian optimization with a Gaussian
process, on the other hand, allows us to specify within a
small number of iterations the visual parameters that maximize
the participants’ judgments of the similarity between haptic
and visual softness. In the optimization process, the algorithm
takes the visual parameters which the participants chose in
the current trial as its input. Next, the algorithm updates the
objective function with a Gaussian process. Finally, the algo-
rithm searches for and proposes a new set of visual parameters
that is likely to induce the participant’s preferential choice in
the next trial on the basis of its preference learning features
of exploitation (choosing points near a previously observed
optimum) and exploration (choosing points in areas that have
not been well explored) [24]. Thus, as the optimized values
were determined on the basis of the visual parameters that
the participants preferentially chose, it followed that we could
conclude that the optimized value of the visual parameters
was related to the participant’s preferential judgment for the

haptic-visual softness matching. The objective function was
iteratively updated based on the parameters the participants
chose. Note that the algorithm used in our study could
simultaneously optimize both visual parameters (indentation
depth and speed), without being specialized to either one
of them. The optimization procedure was implemented using
preference learning with a Gaussian process in the Python
GPro library [25].

E. Procedure

The experiment was programmed using PsychoPy [26].
In each trial, one material was positioned in front of the
participant’s right hand so that a smooth surface of the material
was uppermost. The exact same type of material was used for
both the haptic and visual stimuli. For the haptic stimulus
presentation, participants were allowed to compress the top
surface of the material with their index finger once only. To
prevent them accurately assessing the indentation depth of
their finger press, participants were not allowed to repeatedly
touch the materials.

For the visual stimuli, two video clips were shown in which
each material was indented, and the participants watched them.
One of the clips in each trial was the same clip that the
participant had selected in the preceding trial. The other clip
was a video newly created by our algorithm on the basis of the
clip selected in the preceding trial. In each clip, the material
was indented to a certain depth at a certain speed. The clips
were looped.

After the presentation of the haptic and visual stimuli,
participants were asked to report their judgment as to which of
the two video clips contained a material whose softness was
most similar to the material they touched with their fingers.
After participants had provided their answers, the algorithm
updated the model and suggested new values of indentation
depth and speed for the video clip to be presented in the
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Fig. 3. Snapshots of raw videos of each material.

subsequent trial. The software created a new clip based on
the suggested values. As described above, the new clip and
the clip selected by the participant in the current trial were
presented in the subsequent trial.

There were 25 trials in a set. We set the number of
trials at 25 so that the visual indentation depth and speed
would converge within one set. On the basis of a preliminary
examination, we expected that they would converge within
the space of 25 trials. The presented visual indentation depth
could vary from 1.0 mm to 18.0 mm. The presented visual
indentation speed could vary from 2.0 mm/s to 15.0 mm/s.
Based on the author’s preliminary observations, the optimized
values were expected to be in a range up to 10. Thus, the
initial values for indentation depth and speed were randomly
sampled from their variation ranges. One task consisted of six
sets, corresponding to six materials. The presentation order
of the six materials was assigned pseudo-randomly to each
participant. There were 2 task types for each participant. Thus,
each participant performed 300 trials (=25 trials × 6 sets × 2
tasks).

Before the 1st trial and after the 5th, 10th, 15th, 20th, and
25th trials, participants were also asked to provide subjective
rating scores of the extent to which the softness of the material
in the clip matched the softness of the material they indented.
In the 1st trial, participants rated one of two clips made
by the experimental software. It was determined at random
which clip was rated. In the 5th, 10th, 15th, 20th, and 25th
trials, participants rated the clip they selected in the respective
trials. Participants reported the degree of consistency between
haptic and visual softness as a consequence of the sequential
haptic-visual matching on a seven-point scale with 1 for “do
not match at all”, 2 for “do not match”, 3 for “don’t match

very much”, 4 for “neutral”, 5 for “somewhat match”, 6 for
“match”, and 7 for “match perfectly”.

III. RESULTS

This section is laid out as follows. First, we investigate
whether the visual indentation depth and/or visual indentation
speed after optimization vary with the material compliance.
Second, we examine the relationship of indentation depth
between touch and vision. Finally, we check the improvement
in the subjective rating for softness matching arising from the
optimization since it is still unclear whether the evolution
and variation of the optimized visual parameter cause the
improvement in the subjective rating for softness matching.
We report only the statistical results critical to interpreting the
experimental results.

A. Optimization of Visual Parameters

Figures 4(a) and (b) show the evolution of visual indentation
depth and indentation speed. It appears that, while there were
wide differences in the visual indentation depth among the
materials, there were only small differences in the visual
indentation speed.

Generally, it is assumed that the optimized value in the
later trials is more reliable. Thus, we focused on the visual
parameters chosen for the last trial (see Figure 4(c)) and
investigated whether the visual parameters were statistically
different between the materials. If the participant successfully
optimized the visual parameter so that the visual softness
matched the material compliance, the visual parameter should
correspond to the material compliance. Since the materials
used in this experiment had different levels of compliance,
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Fig. 4. (a) Evolution of visual indentation depth. (b) Evolution of visual indentation speed. The shadowed area shows 95 %C.I. (c) Optimized visual indentation
depth and speed after the last trial. (d) Result of multiple comparisons between material pairs for optimized visual indentation depth after the last trial. The
color of the cell denotes Cohen’s d value, and the asterisk denotes the significance of the difference. Bonferroni corrected p-value was used for significance
judgment.

the optimized visual parameter should also differ between
materials if the visual parameter was in fact relevant to the
haptic-visual sequential matching of softness.

1) Optimization of Visual Indentation Depth: We conducted
a one-way repeated measures ANOVA using material as a fixed
factor on visual indentation depth. Note that we averaged the
data of the two tasks (visual-haptic and haptic-visual tasks)
per participant. There was a significant main effect of material
[F (5, 64) = 27.41, p < 0.001, η2p = 0.68]. In post-hoc test, we
conducted multiple comparisons with Bonferroni correction
for the significant main effects of materials. There were
significant differences only between the following material
pairs: A-D, A-E, A-F, B-D, B-E, B-F, C-D, C-E, C-F, D-E,
and D-F (p < 0.05). See Cohen’s d for each of the differences
in Figure 4(d).

Our results showed that the optimized values of the visual
indentation depth depended on the materials, indicating that
the optimization was successfully achieved in accordance with
the participants’ judgment for the haptic and visual sequential
matching of material softness.

2) Optimization of Visual Indentation Speed: We also
conducted a one-way repeated measures ANOVA on visual
indentation speed. There was no significant main effect of
material [F (5, 64) = 0.35, p = 0.88, η2p = 0.026, observed
power = 0.66]. This showed that the optimized values of
the visual indentation speed did not depend on the materials,
indicating that the visual indentation speed was not used for
the sequential matching of material softness.

One might suspect that the difference in the optimization
outcomes between visual parameters was due to the special-
ization of the algorithm to one of the parameters. That is,
there was a possibility that the algorithm tried to preferentially
optimize one parameter over the other. To assess this possi-
bility, we checked the value obtained by dividing the standard
deviation of the suggested values by the range of each visual
parameter. If the values differed between the two parameters,
we would have been able to conclude that the algorithm treated
them differently. The value obtained for visual indentation
depth was 0.294 and that for visual indentation speed was
0.290. The values were thus almost identical. These results
indicate that the algorithm treated the two parameters without
specialization to either one of them.

3) Correlation between Visual Indentation Depth and Hap-
tic Indentation Depth: As described in the previous sections,
we found that the visual indentation depth was used for soft-
ness matching. It is clear that indentation depth was haptically
recognizable during the indentation the participant made in
the real material with their finger. There is a possibility that
the participants were able to evaluate the similarity between
haptic and visual softness by linking the haptic indentation
depth with the visual one. To explore this possibility, during
the experiment, the participant’s finger position was tracked
and analyzed. Using the data from the tracked finger positions,
we sought to clarify the relationship between visual and haptic
indentation depth.

We averaged the optimized values of the visual indentation
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Fig. 5. Relationship between indentation depth in the video clips (visual
indentation depth) and depth of the indentation made by the participant’s
finger (haptic indentation depth).

depth for each combination of participant and material. We
also averaged the indentation depth applied by each partic-
ipant’s finger (haptic indentation depth) using the data for
tracked finger positions during all trials. The relationship
between them is shown in Figure 5. The Pearson correlation
coefficient was 0.77 (p < 0.001). The results of the correlation
analysis indicate that the variation of the optimized values of
the visual indentation depth was positively related to the varia-
tion of the haptic indentation depth (i.e., the indentation made
by the participant’s finger). The strong correlation suggests
that the participants were able to evaluate the consistency of
haptic and visual softness by linking the haptic indentation
depth with the visual indentation depth. The results shed light
on a new cross-modal matching mechanism that likely operates
in scenarios where participants are not allowed to evaluate
simultaneously the information given to each haptic and visual
modality, but are required to judge the consistency of haptic
and visual softness sequentially.

B. Subjective Rating for the Matching between Haptic and
Visual Softness

In the previous section, we found that visual indentation
depth was optimized depending on the material to match its
softness. Still, it was unclear if this optimization actually
caused the improvement in subjective ratings for softness
matching.

Figure 6(a) shows rating scores for the matching between
haptic and visual softness for each material. To clarify whether
the evolution of optimized visual indentation depth caused the
change in subjective rating for softness matching, we first ap-
plied an Aligned Rank Transform (ART) [27], [28] to the data.
In general, the rating scores were not normally distributed, and
thus, it was not deemed appropriate to parametrically analyze
the raw scores. ART is a procedure developed to perform
the ANOVA with non-normally distributed data, wherein the
rating score is first “aligned” for each of main effects and

interactions, and then ranked. The obtained rank can then
be the subject of an ANOVA. Unlike other nonparametric
statistical tests such as the Kruskal-Wallis test, ANOVA with
the use of ART enables analysis using multiple factors with
appropriate Type I error rates and suitable powers. We used
trials and material as fixed factors in the ART. The main
effect of trials was significant [F (5, 396) = 18.0, p < 0.001,
η2p = 0.19], as was the main effect of material [F (5, 396) =
4.5, p < 0.001, η2p = 0.05]. The interaction effect was not
significant [F (25, 396) = 1.0, p = 0.44, η2p = 0.061].

As post-hoc tests of the significant main effects, we
conducted multiple comparisons with Bonferroni correction
for each of the significant main effects using the Aligned
Rank Transform Contrasts (ART-C) procedure [29]. ART-C
is an additional align-and-rank procedure to facilitate post-
hoc pairwise comparisons without inflating Type I error rates.
Regarding the main effect of trials, there were significant
differences between the following trial pairs: 1st-5th, 1st-10th,
1st-15th, 1st-20th, 1st-25th, 5th-15th, 5th-20th, and 5th-25th
(p < 0.05) (see Figure 6(b)). Regarding the results of the
multiple comparisons due to the main effect of materials,
please see Figure 6(c).

In addition, to clarify whether the subjective rating for
softness matching was significantly improved after optimiza-
tion, we calculated the 95% confidence interval (CI) of the
subjective rating scores in the last trial for each material
based on 10,000 bootstrap samples [30]. If the Bonferroni-
corrected 95% CI did not overlap four (i.e., “neutral”), we
could conclude that the subjective rating was significantly
improved over neutral. This analysis showed that the 95% CIs
of subjective rating for all materials were significantly larger
than four.

Consequently, the optimization for the visual indentation
depth improved subjective rating scores for softness matching
up to the 10th trial. Moreover, the rating scores with the
ultimate optimization value were significantly higher than the
“neutral” criterion. The results indicate that the optimization of
visual indentation depth significantly improves the subjective
consistency of material softness between touch and vision.

IV. DISCUSSION

The present study for the first time investigated which visual
parameters were used for the sequential matching of material
softness. We discovered that visual indentation depth, rather
than visual indentation speed, was used for optimization in
haptic-visual sequential matching (see Figure 4). One of our
previous studies [19] has shown that both indentation depth
and speed significantly contributed to the “visual” judgment
of material softness. That study also showed that visual
indentation depth had stronger effects on the judgment of
softness than visual indentation speed. The present study has
reported that only indentation depth was used by the perceptual
system to match the material softness between haptic and
visual modalities. Thus, it is our conclusion that participants
utilized only visual indentation depth, which has been reported
to have a pronounced influence on visual softness, in the
context of the sequential matching of haptic-visual softness.
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Fig. 6. (a) Evolution of subjective rating for softness matching for each material. Error bars denote 95 %C.I. (b) Result of multiple comparisons between
trials as a post-hoc test for the main effect of trial on the subjective rating for softness matching. (c) Result of multiple comparisons between materials as a
post-hoc test for the main effect of material on the subjective rating for softness matching.

One thing we should pay attention to is the range of the
indentation speed in our experimental settings. The range was
limited to between 2 mm/s and 15 mm/s. If the speed could be
manipulated beyond this range, the effect of indentation speed
might be found to have an effect on perceived softness.

Our results showed that visual indentation depth was highly
correlated with haptic indentation depth. We speculate that the
participants might imagine ideal values for visual indentation
depth based on the indentation depth of their own finger and
use this to judge the similarity of the softness. This finding
contributes to our understanding of how the perceptual system
judges the consistency of haptic and visual softness in contexts
where participants are not allowed to evaluate the information
given to each sensory modality at the same time.

As for the degree to which haptic-visual sequential matching
of material softness is achieved as a result of optimization, the
subjective rating scores were significantly higher than 4 (i.e.,
“neutral”). Furthermore, the subjective rating scores reached
5 (i.e., “visual and haptic softness somewhat match”) or 6
(i.e., “visual and haptic softness match”) on average for all
materials. This subjectively high satisfaction regarding the
sequential matching indicates that optimization was carried
out successfully. The present study might provide helpful
information for haptic-visual sequential matching design. As
a real-world problem, there are many cases where a designer
wants to match visual softness with haptic softness. For
example, if online sellers want to sell soft cushions online,
it would be helpful if they could match the visual information
in the cushions’ photos/video clips on their website with the
actual haptic softness of the cushions. The methods used in
this study are promising for online sellers who want to ensure
the subjective matching of haptic and visual softness of a
cushion, or other product; the method does not require much
time investment, with the entire process often being completed
in less than about ten minutes.

The pattern of convergence of subjective rating scores
for the consistency between haptic and visual softness was
dependent on the type of material (see Supplementary Table 2).
Specifically, rating scores for the stiffer materials (A, B, C, and
D) were higher than those for the softer materials (E and F).
The present study configured the initial values in optimization

for visual indentation depth and visual indentation speeds to
be common across the materials. We suggest that the optimal
value of the visual indentation depth for the stiffer materials
might be nearer to the initial values than the optimal value for
the softer materials, and that this caused the difference in the
pattern of convergence of the consistency rating scores among
the materials. It may be possible to moderate the difference
in the rating scores among the materials by appropriately
configuring the initial values in optimization and shortening
the time to convergence.

The potential impact of demand characteristics on partici-
pants’ subjective rating scores should be noted. The partici-
pant’s task was to select the video clips for a certain material
that gave a similar softness impression to the softness of the
haptic stimuli. Thus, there was a possibility that the partici-
pants noticed the purpose of the study and tried to rate the
consistency of haptic-visual softness in accordance with the
experimenter’s expectations. Still, if the demand characteristic
was a unitary cause of the improvement of the rating scores,
one would be required to explain why the rating scores did
not improve after the 10th trial. It is natural to interpret this
to mean that the optimization was completed to produce a
sufficient level of subjective consistency by the 10th trial. Still,
there is also a possibility that the current task is contaminated
with a demand characteristic, and thus, future studies need to
examine this issue with an improved protocol whereby, for
example, the influence of demand characteristics is reduced
by mixing trials in multiple sets or including additional trials
with unrelated stimuli.

The type of material used in our experiment was limited to
a specific rubber-like material. Hence, the generalizability of
the conclusion to other categories of elastic materials, such as
soft plastics or hard rubbers, is probably promising, but has not
been confirmed yet. Further research is needed to determine
the extent to which the findings can be generalized to different
categories of elastic materials.

In our experiment, participants were required to indent a
material with their finger. We decided to ask them to do so
because it is known from exploratory procedure studies that
people judge the softness of materials mainly by pushing [31].
We expect that even if the participants were allowed to touch
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the material freely, the softness judgment would be performed
by indenting the material with their finger and/or palm. The
previous study just cited has also suggested that different
modes of touch, such as rubbing or lifting, provide information
about the roughness or weight of a material, rather than about
its softness. Thus, if a different mode of touch than indenting
was required, it would not be easy for participants to make an
assessment of material softness. As a result, the optimization
of visual indentation depth and speed would not proceed as
intended.

Our study successfully identified the visual parameter that
supports haptic-visual softness matching. Due to the ease
with which visual indentation depth can be manipulated and
presented in the video clips showing object deformation, our
findings will be useful in a number of application scenarios.
On the other hand, there is a risk of some ambiguity in the
visual indentation cue due to the camera angle and/or the
distance between the camera and the material. Even in that
case, we suggest that other visual features may contribute to
the inference of indentation depth, and thus, visual softness.
For example, it is known that texture deformation serves as
a cue to softness perception even when the visual indentation
depth is not explicitly displayed [32], [33]. Moreover, other
haptic and even auditory parameters may also play a part in
the determination of material softness perception. Hence, to
establish the consistency of haptic-visual softness in a real-
world setting wherein more parameters are involved in the
determination of perceptual softness, it may be necessary to
consider optimizations in a higher dimensional space than
the two-dimensional space that the present study assumed.
The exploration of this as yet unknown information providing
effective cues for haptic-visual softness matching is left as an
open issue for future research.
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